One-Pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: kinetic, isotherm and thermodynamic studies

نویسندگان

  • Abbas Norouzian Baghani
  • Amir Hossein Mahvi
  • Mitra Gholami
  • Noushin Rastkari
  • Mahdieh Delikhoon
چکیده

BACKGROUND Discharge of heavy metals such as hexavalent chromium (Cr (VI)) and nickel (Ni (II)) into aquatic ecosystems is a matter of concern in wastewater treatment due to their harmful effects on humans. In this paper, removal of Cr (VI) and Ni (II) ions from aqueous solution was investigated using an amino-functionalized magnetic Nano-adsorbent (Fe3O4-NH2). METHODS An amino-functionalized magnetic Nano-adsorbent (Fe3O4-NH2) was synthesized by compositing Fe3O4 with 1, 6-hexanediamine for removal of Cr (VI) and Ni (II) ions from aqueous solution. The adsorbent was characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), powder X-Ray Diffraction (XRD), and Vibrating Sample Magnetometry (VSM). Also, the effects of various operational parameters were studied. RESULTS According to our finding, Fe3O4-NH2 could be simply separated from aqueous solution with an external magnetic field at 30 s. The experimental data for the adsorption of Cr (VI) and Ni (II) ions revealed that the process followed the Langmuir isotherm and the maximum adsorption capacity was 232.51 mg g(-1) for Cr (VI) at pH = 3 and 222.12 mg g(-1) and for Ni(II) at pH = 6 at 298 °K. Besides, the kinetic data indicated that the results fitted with the pseudo-second-order model (R(2): 0.9871 and 0.9947 % for Cr (VI) and Ni (II), respectively. The results of thermodynamic study indicated that: standard free energy changes (ΔG(ɵ)), standard enthalpy change (ΔH(ɵ)), and standard entropy change (ΔS(ɵ)) were respectively -3.28, 137.1, and 26.91 kJ mol(-1) for Cr (VI) and -6.8433, 116.7, and 31.02 kJ mol(-1) for Ni (II). The adsorption/desorption cycles of Fe3O4-NH2 indicated that it could be used for five times. CONCLUSIONS The selected metals' sorption was achieved mainly via electrostatic attraction and coordination interactions. In fact, Fe3O4-NH2 could be removed more than 96 % for both Cr (VI) and Ni (II) ions from aqueous solution and actual wastewater.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of adsorption efficiency of activated carbon/chitosan composite for removal of Cr (VI) and Cd (II) from single and bi-solute dilute solution

The aim of this study was to evaluate the adsorption capacity of the novel coated activated carbon by chitosan for removal of Cr (VI) and Cd (II) ions from single and bi-solute dilute aqueous solutions. In addition, the adsorption abilities of activated carbon (AC), chitosan (CH) and chitosan / activated carbon composite (CHAC) have been compared. Adsorption studies were performed in a batch sy...

متن کامل

Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent wer...

متن کامل

Synthesis of 2,4-dinitrophenylhydrazine loaded sodium dodecyl sulfate-coated magnetite nanoparticles for adsorption of Hg(II) ions from an aqueous solution

Background: The rapid increase in agricultural and industrial development has made heavy metal pollution a serious environmental problem and public health threat; therefore, removal of heavy metals from water is important. The current study prepared DNPH@SDS@Fe3O4 nanoparticles as a novel and effective adsorbent for removal of Hg(II) ions from an aqueous solution. Methods: A selective adsorben...

متن کامل

Removal of Nickel (II) ions from aqueous solutions using Iron (III) oxide nanoparticles: study of kinetic, isotherm and thermodynamic models

Background and Objective: Due to the existence of industries such as stainless steel, the presence of nickel (II) ions in water and wastewater has been reported at high concentrations. Removal of nickel (II) ions from wastewater and the environment are of primary importance. In this study, iron (III) oxide nanoparticles were studied as an adsorbent for removal of Ni (II) ions from water in the ...

متن کامل

Removal of Pb(II) and Cu(II) Ions from ‎Aqueous Solutions by Cadmium Sulfide ‎Nanoparticles

   In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016